A Modal Logic of the Real Numbers

George Metcalfe

Mathematical Institute University of Bern

Joint work with Denisa Diaconescu and Laura Schnüriger

LATD 2016, Phalaborwa, 28-30 June 2016

An Axiomatization Problem

Hansoul and Teheux (2013) axiomatize a **modal Łukasiewicz logic** over (crisp) Kripke frames by adding to an axiomatization of Łukasiewicz logic

$$\Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$$
$$\Box(\varphi \oplus \varphi) \to (\Box \varphi \oplus \Box \varphi)$$
$$\Box(\varphi \odot \varphi) \to (\Box \varphi \odot \Box \varphi)$$
$$\frac{\varphi}{\Box \varphi}$$

and a rule with infinitely many premises

$$\frac{\varphi \oplus \varphi \quad \varphi \oplus \varphi^2 \quad \varphi \oplus \varphi^3 \quad \dots}{\varphi}$$

But is this infinitary rule really necessary?

An Axiomatization Problem

Hansoul and Teheux (2013) axiomatize a **modal Łukasiewicz logic** over (crisp) Kripke frames by adding to an axiomatization of Łukasiewicz logic

$$\Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$$
$$\Box(\varphi \oplus \varphi) \to (\Box \varphi \oplus \Box \varphi)$$
$$\Box(\varphi \odot \varphi) \to (\Box \varphi \odot \Box \varphi)$$
$$\frac{\varphi}{\Box \varphi}$$

and a rule with infinitely many premises

$$\frac{\varphi \oplus \varphi \quad \varphi \oplus \varphi^2 \quad \varphi \oplus \varphi^3 \quad \dots}{\varphi}$$

But is this infinitary rule really necessary?

An Axiomatization Problem

Hansoul and Teheux (2013) axiomatize a **modal Łukasiewicz logic** over (crisp) Kripke frames by adding to an axiomatization of Łukasiewicz logic

$$\Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$$
$$\Box(\varphi \oplus \varphi) \to (\Box \varphi \oplus \Box \varphi)$$
$$\Box(\varphi \odot \varphi) \to (\Box \varphi \odot \Box \varphi)$$
$$\frac{\varphi}{\Box \varphi}$$

and a rule with infinitely many premises

$$\frac{\varphi \oplus \varphi \quad \varphi \oplus \varphi^2 \quad \varphi \oplus \varphi^3 \quad \dots}{\varphi}$$

But is this infinitary rule really necessary?

Towards a Solution...

We axiomatize a **modal logic of the real numbers** that extends the multiplicative fragment of Abelian logic.

D. Diaconescu, G. Metcalfe, and L. Schnüriger. Axiomatizing a Real-Valued Modal Logic. *Proceedings of AiML 2016*, to appear.

The Multiplicative Fragment of Abelian Logic

The multiplicative fragment of abelian logic is axiomatized by

(B)
$$(\varphi \to \psi) \to ((\psi \to \chi) \to (\varphi \to \chi))$$

(C)
$$(\varphi \to (\psi \to \chi)) \to (\psi \to (\varphi \to \chi))$$

(I)
$$\varphi \to \varphi$$

(A)
$$((\varphi \to \psi) \to \psi) \to \varphi$$

$$\frac{\varphi \quad \varphi \to \psi}{\psi} \text{ (mp)}$$

and is complete with respect to the logical matrix

$$\langle (\mathbb{R}, \to^{\mathbb{R}}), \mathbb{R}_{\geq 0} \rangle$$
 where $x \to^{\mathbb{R}} y = y - x$.

The Multiplicative Fragment of Abelian Logic

The multiplicative fragment of abelian logic is axiomatized by

(B)
$$(\varphi \to \psi) \to ((\psi \to \chi) \to (\varphi \to \chi))$$

(C)
$$(\varphi \to (\psi \to \chi)) \to (\psi \to (\varphi \to \chi))$$

(I)
$$\varphi \to \varphi$$

(A)
$$((\varphi \to \psi) \to \psi) \to \varphi$$

$$\frac{\varphi \quad \varphi \to \psi}{\psi} \text{ (mp)}$$

and is complete with respect to the logical matrix

$$\langle (\mathbb{R}, \to^{\mathbb{R}}), \mathbb{R}_{\geq 0} \rangle$$
 where $x \to^{\mathbb{R}} y = y - x$.

A Modal Language

We define further connectives (for a fixed variable p_0)

$$\overline{0} := p_0 \to p_0
\neg \varphi := \varphi \to \overline{0}
\varphi + \psi := \neg \varphi \to \psi.$$

For our modal language, we add a unary connective \square , and define

$$\Diamond \varphi := \neg \Box \neg \varphi.$$

The set of formulas ${\rm Fm}$ for this language is defined inductively as usual over a countably infinite set of variables ${\rm Var}.$

A Modal Language

We define further connectives (for a fixed variable p_0)

$$\overline{0} := p_0 \to p_0
\neg \varphi := \varphi \to \overline{0}
\varphi + \psi := \neg \varphi \to \psi.$$

For our modal language, we add a unary connective \square , and define

$$\Diamond \varphi := \neg \Box \neg \varphi.$$

The set of formulas ${\rm Fm}$ for this language is defined inductively as usual over a countably infinite set of variables ${\rm Var}.$

Frames

A (crisp) frame $\mathfrak{F} = \langle W, R \rangle$ consists of

- ullet a non-empty set of worlds W
- an accessibility relation $R \subseteq W \times W$.

 \mathfrak{F} is called **serial** if for all $x \in W$, there exists $y \in W$ such that Rxy.

Frames

A (crisp) frame $\mathfrak{F} = \langle W, R \rangle$ consists of

- ullet a non-empty set of worlds W
- an accessibility relation $R \subseteq W \times W$.

 \mathfrak{F} is called **serial** if for all $x \in W$, there exists $y \in W$ such that Rxy.

Models

A $K(\mathbb{R})$ -model $\langle W, R, V \rangle$ consists of

- a serial frame $\langle W, R \rangle$
- an **evaluation map** $V : Var \times W \to D$ for some bounded $D \subseteq \mathbb{R}$.

The evaluation map is extended to $V : \operatorname{Fm} \times W \to \mathbb{R}$ by

$$V(\varphi \to \psi, x) = V(\psi, x) - V(\varphi, x)$$

 $V(\Box \varphi, x) = \inf\{V(\varphi, y) : Rxy\}.$

It follows also that

$$V(\overline{0},x) = 0$$
 $V(\varphi + \psi,x) = V(\varphi,x) + V(\psi,x)$ $V(\neg \varphi,x) = -V(\varphi,x)$ $V(\Diamond \varphi,x) = \sup\{V(\varphi,y) : Rxy\}.$

Models

A K(\mathbb{R})-model $\langle W, R, V \rangle$ consists of

- a serial frame $\langle W, R \rangle$
- an **evaluation map** $V : Var \times W \to D$ for some bounded $D \subseteq \mathbb{R}$.

The evaluation map is extended to $V \colon \operatorname{Fm} \times W \to \mathbb{R}$ by

$$V(\varphi \to \psi, x) = V(\psi, x) - V(\varphi, x)$$

 $V(\Box \varphi, x) = \inf\{V(\varphi, y) : Rxy\}.$

It follows also that

$$V(\overline{0},x) = 0$$
 $V(\varphi + \psi,x) = V(\varphi,x) + V(\psi,x)$ $V(\neg \varphi,x) = -V(\varphi,x)$ $V(\Diamond \varphi,x) = \sup\{V(\varphi,y) : Rxy\}.$

Models

A K(\mathbb{R})-model $\langle W, R, V \rangle$ consists of

- a serial frame $\langle W, R \rangle$
- an **evaluation map** $V : Var \times W \to D$ for some bounded $D \subseteq \mathbb{R}$.

The evaluation map is extended to $V \colon \operatorname{Fm} \times W \to \mathbb{R}$ by

$$V(\varphi \to \psi, x) = V(\psi, x) - V(\varphi, x)$$

 $V(\Box \varphi, x) = \inf\{V(\varphi, y) : Rxy\}.$

It follows also that

$$V(\overline{0},x) = 0$$
 $V(\varphi + \psi,x) = V(\varphi,x) + V(\psi,x)$ $V(\neg \varphi,x) = -V(\varphi,x)$ $V(\Diamond \varphi,x) = \sup\{V(\varphi,y) : Rxy\}.$

Validity

A formula φ is

- valid in a $\mathrm{K}(\mathbb{R})$ -model $\langle W, R, V \rangle$ if $V(\varphi, x) \geq 0$ for all $x \in W$
- $K(\mathbb{R})$ -valid if it is valid in all $K(\mathbb{R})$ -models.

Lemma

- (1) φ is $K(\mathbb{R})$ -valid
- (2) φ is valid in all finite $K(\mathbb{R})$ -models.

Validity

A formula φ is

- valid in a $\mathrm{K}(\mathbb{R})$ -model $\langle W, R, V \rangle$ if $V(\varphi, x) \geq 0$ for all $x \in W$
- \bullet $K(\mathbb{R})\text{-}\text{\bf valid}$ if it is valid in all $K(\mathbb{R})\text{-}\text{models}.$

Lemma

- (1) φ is $K(\mathbb{R})$ -valid
- (2) φ is valid in all finite $K(\mathbb{R})$ -models.

Validity

A formula φ is

- valid in a $\mathrm{K}(\mathbb{R})$ -model $\langle W, R, V \rangle$ if $V(\varphi, x) \geq 0$ for all $x \in W$
- $K(\mathbb{R})$ -valid if it is valid in all $K(\mathbb{R})$ -models.

Lemma

- (1) φ is $K(\mathbb{R})$ -valid.
- (2) φ is valid in all finite $K(\mathbb{R})$ -models.

An Axiom System

Our axiom system $K(\mathbb{R})$ consists of an axiomatization for the multiplicative fragment of abelian logic extended with

(K)
$$\Box(\varphi \to \psi) \to (\Box\varphi \to \Box\psi)$$

(P) $\Box(\varphi + \ldots + \varphi) \to (\Box\varphi + \ldots + \Box\varphi)$
 $\frac{\varphi}{\Box\varphi}$ (nec) $\frac{\varphi + \ldots + \varphi}{\varphi}$ (con)

The Sequent Calculus $GK(\mathbb{R})$

$$\frac{\Gamma, \varphi \Rightarrow \Delta \qquad \Pi \Rightarrow \varphi, \Sigma}{\Gamma, \Pi \Rightarrow \Sigma, \Delta} \text{ (CUT)}$$

$$\frac{\Gamma \Rightarrow \Delta \qquad \Pi \Rightarrow \Sigma}{\Gamma, \Pi \Rightarrow \Sigma, \Delta} \text{ (MIX)} \qquad \frac{\Gamma, \dots, \Gamma \Rightarrow \Delta, \dots, \Delta}{\Gamma \Rightarrow \Delta} \text{ (SC)}$$

$$\frac{\Gamma, \psi \Rightarrow \varphi, \Delta}{\Gamma, \varphi \rightarrow \psi \Rightarrow \Delta} \text{ (\rightarrow\Rightarrow$)} \qquad \frac{\Gamma, \varphi \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \varphi \rightarrow \psi, \Delta} \text{ (\Rightarrow\rightarrow$)}$$

$$\frac{\Gamma \Rightarrow \varphi, \dots, \varphi}{\Box \Gamma \Rightarrow \Box \varphi, \dots, \Box \varphi} \text{ (\Box)}$$

Equivalence of Proof Systems

We interpret sequents by

$$(\varphi_1,\ldots,\varphi_n\Rightarrow\psi_1,\ldots,\psi_m)^{\mathcal{I}}:=(\varphi_1+\cdots+\varphi_n)\rightarrow(\psi_1+\ldots+\psi_m),$$

where $\varphi_1 + \cdots + \varphi_n := \overline{0}$ for n = 0.

Theorem

The following are equivalent.

- (1) $\Gamma \Rightarrow \Delta$ is derivable in $GK(\mathbb{R})$.
- (2) $(\Gamma \Rightarrow \Delta)^{\mathcal{I}}$ is derivable in $K(\mathbb{R})$.

Moreover, $GK(\mathbb{R})$ admits cut elimination.

Equivalence of Proof Systems

We interpret sequents by

$$(\varphi_1,\ldots,\varphi_n\Rightarrow\psi_1,\ldots,\psi_m)^{\mathcal{I}}:=(\varphi_1+\cdots+\varphi_n)\rightarrow(\psi_1+\ldots+\psi_m),$$

where $\varphi_1 + \cdots + \varphi_n := \overline{0}$ for n = 0.

Theorem

The following are equivalent:

- (1) $\Gamma \Rightarrow \Delta$ is derivable in $GK(\mathbb{R})$.
- (2) $(\Gamma \Rightarrow \Delta)^{\mathcal{I}}$ is derivable in $K(\mathbb{R})$.

Moreover, $GK(\mathbb{R})$ admits cut elimination.

The Main Result

Theorem

- (1) φ is $K(\mathbb{R})$ -valid.
- (2) φ is derivable in $K(\mathbb{R})$.
- (3) $\Rightarrow \varphi$ is derivable in $GK(\mathbb{R})$.

We prove by induction on the complexity of a sequent S that

$$S^{\mathcal{I}}$$
 is $\mathrm{K}(\mathbb{R})$ -valid \implies S is derivable in $\mathrm{GK}(\mathbb{R})$.

Suppose that S is $\Box \Gamma \Rightarrow \Box \varphi_1, \ldots, \Box \varphi_n$. We apply the following $GK(\mathbb{R})$ -derivable rule for some k > 0 and $k\Gamma = \Gamma_0, \Gamma_1, \ldots, \Gamma_n$:

$$\frac{\Gamma_0 \Rightarrow \Gamma_1 \Rightarrow k[\varphi_1] \dots \Gamma_n \Rightarrow k[\varphi_n]}{\Box \Gamma \Rightarrow \Box \varphi_1, \dots, \Box \varphi_n}$$

We prove by induction on the complexity of a sequent S that

$$S^{\mathcal{I}}$$
 is $\mathrm{K}(\mathbb{R})$ -valid \implies S is derivable in $\mathrm{GK}(\mathbb{R})$.

Suppose that S is $\Box \Gamma \Rightarrow \Box \varphi_1, \ldots, \Box \varphi_n$. We apply the following $GK(\mathbb{R})$ -derivable rule for some k > 0 and $k\Gamma = \Gamma_0, \Gamma_1, \ldots, \Gamma_n$:

$$\frac{\Gamma_0 \Rightarrow \Gamma_1 \Rightarrow k[\varphi_1] \dots \Gamma_n \Rightarrow k[\varphi_n]}{\Box \Gamma \Rightarrow \Box \varphi_1, \dots, \Box \varphi_n}$$

We prove by induction on the complexity of a sequent S that

$$S^{\mathcal{I}}$$
 is $\mathrm{K}(\mathbb{R})$ -valid \implies S is derivable in $\mathrm{GK}(\mathbb{R})$.

Suppose that S is $\Box \Gamma \Rightarrow \Box \varphi_1, \ldots, \Box \varphi_n$. We apply the following $GK(\mathbb{R})$ -derivable rule for some k > 0 and $k\Gamma = \Gamma_0, \Gamma_1, \ldots, \Gamma_n$:

$$\frac{\Gamma_0 \Rightarrow \Gamma_1 \Rightarrow k[\varphi_1] \dots \Gamma_n \Rightarrow k[\varphi_n]}{\Box \Gamma \Rightarrow \Box \varphi_1, \dots, \Box \varphi_n}$$

We prove by induction on the complexity of a sequent S that

$$S^{\mathcal{I}}$$
 is $\mathrm{K}(\mathbb{R})$ -valid \implies S is derivable in $\mathrm{GK}(\mathbb{R})$.

Suppose that S is $\Box \Gamma \Rightarrow \Box \varphi_1, \ldots, \Box \varphi_n$. We apply the following $GK(\mathbb{R})$ -derivable rule for some k > 0 and $k\Gamma = \Gamma_0, \Gamma_1, \ldots, \Gamma_n$:

$$\frac{\Gamma_0 \Rightarrow \Gamma_1 \Rightarrow k[\varphi_1] \dots \Gamma_n \Rightarrow k[\varphi_n]}{\Box \Gamma \Rightarrow \Box \varphi_1, \dots, \Box \varphi_n}$$

We prove by induction on the complexity of a sequent S that

$$S^{\mathcal{I}}$$
 is $\mathrm{K}(\mathbb{R})$ -valid \implies S is derivable in $\mathrm{GK}(\mathbb{R})$.

Suppose that S is $\Box \Gamma \Rightarrow \Box \varphi_1, \ldots, \Box \varphi_n$. We apply the following $GK(\mathbb{R})$ -derivable rule for some k > 0 and $k\Gamma = \Gamma_0, \Gamma_1, \ldots, \Gamma_n$:

$$\frac{\Gamma_0 \Rightarrow \Gamma_1 \Rightarrow k[\varphi_1] \dots \Gamma_n \Rightarrow k[\varphi_n]}{\Box \Gamma \Rightarrow \Box \varphi_1, \dots, \Box \varphi_n}$$

We prove by induction on the complexity of a sequent S that

$$S^{\mathcal{I}}$$
 is $\mathrm{K}(\mathbb{R})$ -valid \implies S is derivable in $\mathrm{GK}(\mathbb{R})$.

Suppose that S is $\Box \Gamma \Rightarrow \Box \varphi_1, \ldots, \Box \varphi_n$. We apply the following $GK(\mathbb{R})$ -derivable rule for some k > 0 and $k\Gamma = \Gamma_0, \Gamma_1, \ldots, \Gamma_n$:

$$\frac{\Gamma_0 \Rightarrow \Gamma_1 \Rightarrow k[\varphi_1] \dots \Gamma_n \Rightarrow k[\varphi_n]}{\Box \Gamma \Rightarrow \Box \varphi_1, \dots, \Box \varphi_n}$$

Complexity

Using our labelled tableau rules, we also obtain:

Theorem

Checking $K(\mathbb{R})$ -validity of formulas is in EXPTIME.

- Can we add extend our axiomatization to an "Abelian modal logic" with lattice connectives? Can we obtain Łukasiewicz modal logic?
- Can we develop useful algebraic semantics for these logics?
- Is the complexity of $K(\mathbb{R})$ -validity EXPTIME-complete? What is the complexity of validity in Łukasiewicz modal logic?

- Can we add extend our axiomatization to an "Abelian modal logic" with lattice connectives? Can we obtain Łukasiewicz modal logic?
- Can we develop useful algebraic semantics for these logics?
- Is the complexity of $K(\mathbb{R})$ -validity EXPTIME-complete? What is the complexity of validity in Łukasiewicz modal logic?

- Can we add extend our axiomatization to an "Abelian modal logic" with lattice connectives? Can we obtain Łukasiewicz modal logic?
- Can we develop useful algebraic semantics for these logics?
- Is the complexity of $K(\mathbb{R})$ -validity EXPTIME-complete? What is the complexity of validity in Łukasiewicz modal logic?

- Can we add extend our axiomatization to an "Abelian modal logic" with lattice connectives? Can we obtain Łukasiewicz modal logic?
- Can we develop useful algebraic semantics for these logics?
- Is the complexity of $K(\mathbb{R})$ -validity EXPTIME-complete? What is the complexity of validity in Łukasiewicz modal logic?