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Groups and quasigroups

Definition
A quasigroup (A, ·,\,/) is a set with 3 binary operations such that for all
x ,y ,z ∈ A

xy = z ⇐⇒ x = z/y ⇐⇒ y = x\z

i.e., one can solve all equations with no repeated variables

Quasigroups form a variety defined by the identities

(x/y)y = x = xy/y and y(y\x) = x = y\yx

A quasigroup with associative · is term-equivalent to a group:

1= y/y and x−1 = (y/y)/x

Hint: xy/z = x((y/z)z)/z = (x(y/z))z/z = x(y/z)
hence x = xy/y = x(y/y) and therefore x\x = y/y
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Residuated binars and semigroups
Definition
A residuated binar (A,≤, ·,\,/) is a poset (A,≤) with 3 binary
operations such that for all x ,y ,z ∈ A

xy ≤ z ⇐⇒ x ≤ z/y ⇐⇒ y ≤ x\z

i.e., one can solve simple inequalities

Residuated binars are defined (relative to posets) by the inequations

(x/y)y ≤ x ≤ xy/y and y(y\x)≤ x ≤ y\yx

Farulewski 2005: The universal theory of residuated binars is decidable

Definition
A residuated semigroup is an associative residuated binar

If the poset is an antichain, then any residuated semigroup is a group!
⇒ residuated semigroups are generalizations of groups (replace = by ≤)
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Residuated lattices and GBL-algebras

Definition
A residuated lattice (A,∧,∨, ·,\,/,1) is a residuated `-monoid

i.e., a lattice (A,∧,∨) and a residuated semigroup with unit

They are the algebraic semantics of substructural logic

The equational theory of residuated lattices is decidable

Definition
A residuated lattice is divisible if x ≤ y =⇒ x = y(y\x) = (x/y)y

Also called a generalized Basic Logic algebra (GBL-algebra)

Open problem: Is the equational theory of GBL-algebras decidable?
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Bounded GBL-algebras

Expand with a bottom element 0 to get GBLo-algebras
They are a variety that includes all Heyting algebras and
MV-algebras
Have distributive lattice reducts (like HA and MV)
[J. - Tsinakis 2002]
All finite GBL-algebras are commutative and integral
[J. - Montagna 2006]
All finite GBL-algebras are poset products of MV-chains
[J. - Montagna 2009]

Open problem: develop a structure theory for GBLo-algebras
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Some Substructural Logics

Substructural Logic

GBLo

CGBLo

BL Int

GLPMV

Cassical Logic
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Right-residuated binars

GBL-algebras fairly complicated, so consider simpler algebras

Definition
A right-residuated binar (A,≤, ·,/) is a poset (A,≤) with 2 binary
operations such that for all x ,y ,z ∈ A

xy ≤ z ⇐⇒ x ≤ z/y

Therefore ·,/ are order-preserving in the left argument:

Let x ≤ y . Then yz ≤ yz ⇐⇒ y ≤ yz/z =⇒ x ≤ yz/z ⇐⇒ xz ≤ yz

Similarly x/z ≤ x/z ⇐⇒ (x/z)z ≤ x =⇒ (x/z)z ≤ y ⇐⇒ x/z ≤ y/z

It would be nice if ≤ is definable from the algebraic operations

Peter Jipsen — Chapman University — June 30, 2016



Right-divisible residuated binars
Theorem
The following are equivalent in any right-residuated binar.
(i) For all x ,y (x ≤ y ⇐⇒ ∃u(x = uy))
(ii) For all x ,y (x ≤ y ⇐⇒ x = (x/y)y) (i.e. right divisibility).
(iii) The identities (y/y)x = x and (y/x)x = (x/y)y hold.

Proof: (i)⇒(ii): Suppose x ≤ y ⇐⇒ ∃u(x = uy) holds.

Assuming x ≤ y one obtains uy = x ≤ x for some u, hence u ≤ x/y .

Since · is order preserving in the left argument, we have x = uy ≤ (x/y)y .

The reverse inequality (x/y)y ≤ x holds in any right-residuated binar, so
we conclude that x ≤ y implies x = (x/y)y .

Conversely, if x = (x/y)y holds, then ∃u(x = uy), whence the first
condition implies x ≤ y .
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(ii) Divisibility iff (iii)(y/y)x = x and (y/x)x = (x/y)y
(ii)⇒(i) since we can take u = x/y .

(ii)⇒(iii): Assume that x ≤ y ⇐⇒ x = (x/y)y for all x ,y .

Since x ≤ x , we get x = (x/x)x .

We always have x ≤ xy/y , hence xy ≤ (xy/y)y holds.

The reverse inequality is also true in general, so xy = (xy/y)y .

From the assumption it follows that xy ≤ y .

Therefore we have x ≤ y/y as an identity, hence x/x ≤ y/y .

Interchanging x ,y proves x/x = y/y .

Multiplying by x on the right we get x = (x/x)x = (y/y)x .
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(ii) Divisibility iff (iii)(y/y)x = x and (y/x)x = (x/y)y
To prove (y/x)x = (x/y)y : Recall (x/y)y ≤ x , and use the assumption
with x replaced by (x/y)y and y replaced by x to get
(x/y)y = ((x/y)y/x)x .

As in the proof of the first identity, we have xy ≤ y .

Dividing and multiplying by z on both sides gives the identity
(xy/z)z ≤ (y/z)z .

Now replace x by x/y and z by x to see that ((x/y)y/x)x ≤ (y/x)x .

It follows that (x/y)y ≤ (y/x)x , and interchanging x ,y proves the identity.

(iii)⇒(ii): Assume the identities (y/y)x = x and (y/x)x = (x/y)y hold.

Want to prove: for all x ,y (x ≤ y ⇐⇒ x = (x/y)y) (i.e. divisibility)
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(iii)(y/y)x = x and (y/x)x = (x/y)y ⇒ (ii)Divisibility

Let x ≤ y . Then (y/y)x ≤ y , hence y/y ≤ y/x .

Multiply by x on the right to get x = (y/y)x ≤ (y/x)x = (x/y)y .The
reverse inequality follows from right-residuation, whence x = (x/y)y .

Again, assume the two identities of (iii) holds, and let x = (x/y)y .

By right-residuation we have (y/x)x ≤ y , so we

deduce (x/y)y ≤ y from the second identity.

Since we started with x = (x/y)y , we conclude that x ≤ y .
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Right-divisible unital residuated binar
The identities for divisibility are (y/y)x = x and (y/x)x = (x/y)y

So y/y is a left unit, and the proof of (ii)⇒(iii) showed x ≤ y/y

Hence y/y is the top element of the poset, denoted by 1

A right-divisible unital residuated binar is a residuated binar
(A,≤, ·,1,/) such that x/x = 1, 1x = x and (y/x)x = (x/y)y hold

The partial order is definable by x ≤ y ⇐⇒ x = (x/y)y

Note that (x/y)y is a lower bound for any pair of elements x ,y and we
always have 1≤ 1/x .

Theorem
In a right-divisible unital binar the partial order is down-directed and the
identity 1/x = 1 holds. The order is also definable by x ≤ y ⇐⇒ y/x = 1.
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Right-divisible unital residuated binars
Theorem
(A, ·,1,/) is a right-divisible unital residuated binar if and only if
it satisfies the (quasi)identities x/x = 1 1x = x
(y/x)x = (x/y)y
x/y = 1 and y/z = 1 =⇒ x/z = 1
z/xy = 1 ⇐⇒ (z/y)/x = 1

Note: x ≤ y if and only if y/x = 1. This is a partial order:
reflexive by x/x = 1
antisymmetric since if x/y = 1 and y/x = 1 then
x = 1x = (y/x)x = (x/y)y = 1y = y
transitive by the implication above

Open problem: Can the quasiequations be replaced by identities?

Open problem: Is the (quasi)equational theory decidable?
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The right hoop identity

Adding one more identity produces an interesting subvariety

In the arithmetic of real numbers (or in any field) the following equation is
fundamental to the simplification of nested fractions:

x
y
z =

1
z ·

x
y =

x
zy

In a right-residuated binar this is the right hoop identity:

(x/y)/z = x/zy
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Consequences of the right hoop identity
Theorem
In a right divisible unital residuated binar the right hoop identity
x/yz = (x/z)/y implies x(yz) = (xy)z, x1= x and x/1= x.

Proof.
x(yz) = 1(x(yz)) (left unital)
= [(xy)z/(xy)z ](x(yz)) since 1= x/x
= [((xy)z/z)/xy ](x(yz)) (right hoop id.)
= [(((xy)z/z)/y)/x ](x(yz)) (right hoop id.)
= [((xy)z/yz)/x ](x(yz)) (right hoop id.)
= [(xy)z/x(yz)](x(yz)) (right hoop id.)
= [x(yz)/(xy)z ]((xy)z) since (y/x)x = (x/y)y
= reverse steps to get = (xy)z .
Now x ≤ 1 implies x = (x/1)1, hence
x1= ((x/1)1)1= (x/1)(11) = (x/1)1= x .
Finally x/1= (x/1)1= (1/x)x = 1x = x .
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Right generalized hoops

Definitions
A right generalized hoop (A, ·,1,/) is defined by the identities

x/x = 1, 1x = x , (x/y)y = (y/x)x and x/(yz) = (x/z)/y

Define the term-operation x ∧y = (x/y)y and

a binary relation ≤ by x ≤ y ⇐⇒ x = x ∧y

The next theorem shows that ∧ is a semilattice operation

hence ≤ is a partial order on A

Moreover, A is right-residuated with respect to this order

and the left-unit 1 is the top element
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Properties of right generalized hoops
Theorem
Let A be a right generalized hoop. Then
(i) the term x ∧y = (x/y)y is idempotent, commutative and associative,
(ii) ≤ is a partial order and ∧ is a meet operation with respect to ≤,
(iii) x ≤ y ⇐⇒ y/x = 1 for all x ,y ∈ A,
(iv) xy ≤ z ⇐⇒ x ≤ z/y for all x ,y ,z ∈ A, and
(v) x ≤ 1 for all x ∈ A, i.e., A is integral.

Proof.
(i) The idempotence follows from the first two identities, and
commutativity follows from the third.For associativity we calculate
(x ∧y)∧ z = (((x/y)y)/z)z = (z/(x/y)y)(x/y)y
= ((z/y)/(x/y))(x/y)y (right hoop id.)
= ((x/y)/(z/y))(z/y)y by assoc. and right-div
= (x/(z/y)y)(z/y)y (right hoop id.)
= x ∧ (z ∧y) = x ∧ (y ∧ z)
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Proof.
(ii) Reflexivity, antisymmetry and transitivity of ≤ and the observation
that x ∧y is the greatest lower bound of x ,y follow from (i).

(iii) x ≤ y is equivalent to x = (x/y)y hence
y/x = y/((x/y)y) = y/((y/x)x) = (y/x)/(y/x) = 1, where the third
equality uses the right hoop identity. Conversely, if y/x = 1 then
(x/y)y = (y/x)x = 1x = x and we conclude x ≤ y .

(iv) From xy ≤ z we deduce z/xy = 1 by (iii). Hence
(x/(z/y))(z/y) = ((z/y)/x)x = (z/xy)x = 1x = x , or equivalently
x ≤ z/y . Conversely, if x ≤ z/y then x = (x/(z/y))(z/y) = (z/xy)x , so
xy = (z/xy)xy = (xy/z)z which is equivalent to xy ≤ z .

(v) Since xy ≤ xy , (iv) implies x ≤ xy/y . Multiplying by y gives
xy ≤ (xy/y)y , and the reverse inequality also holds by (iv). Hence
xy = (xy/y)y , or equivalently xy ≤ y . A final application of (iv) produces
x ≤ y/y = 1.
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Right generalized hoops and porrims

There is a 4-element right generalized hoop s.t. · is not order-preserving
in the right argument

· 0 a b 1
0 0 0 0 0
a 0 a b a
b 0 a b b
1 0 a b 1

/ 0 a b 1
0 1 0 0 0
a 1 1 0 a
b 1 0 1 b
1 1 1 1 1

Partially ordered left-residuated integral monoids (or polrims for
short) are left-residuated monoids such that the monoid operation is
order-preserving in both arguments

They have been studied by van Alten [1998] and Blok, Raftery [1997]

Results on polrims do not automatically apply to right generalized hoops
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Generalized hoops
Definition
A generalized hoop is an algebra (A, ·,1,\,/) such that

(A, ·,1,/) is a right generalized hoop, (A, ·,1,\) is a left generalized
hoop (defined by the mirror-image identities)
and both these algebras have the same meet operation, i. e., the
identity (x/y)y = y(y\x) holds

Generalized hoops were first studied by Bosbach [1969]

The name hoop was introduced by Büchi and Owen [1975]

Generalized hoops are also called pseudo hoops

By the preceding theorem, they are left- and right-residuated

They are polrims, hence congruence distributive (van Alten [1998])
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Multiplication distributes over ∧
In a residuated binar, the residuation property implies that · distributes
over any existing joins in each argument. However, this is not true for
meets.The following result was proved by N. Galatos for GBL-algebras
but already holds for generalized hoops.

Theorem
In any generalized hoop (x ∧y)z = xz ∧yz and x(y ∧ z) = xy ∧xz.

Proof.
From xz ≤ xz it follows that x ≤ xz/z , hence xz ≤ (xz/z)z .Likewise, from
xz/z ≤ xz/z we deduce (xz/z)z ≤ xz , therefore xz = (xz/z)z .Note that
(x ∧y)z ≤ xz ∧yz always holds since · is order-preserving.
Now xz ∧yz = (xz/yz)yz = ((xz/z)/y)yz (right hoop id.)
= (y/((xz)/z))(xz/z)z by assoc. and divisibility
= (y/((xz)/z))xz by the derived identity
≤ (y/x)xz = (y ∧x)z since x ≤ (xz)/z . The second identity is similar.
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Not true for right generalized hoops

In the last step we made use of the implication x ≤ y ⇒ z/y ≤ z/x which
holds in all residuated binars.

The preceding result requires that · is order-preserving in the right
argument
Recall the 4-element right generalized hoop from earlier

· 0 a b 1
0 0 0 0 0
a 0 a b a
b 0 a b b
1 0 a b 1

/ 0 a b 1
0 1 0 0 0
a 1 1 0 a
b 1 0 1 b
1 1 1 1 1

(a∧b)a = (a/b)ba = 0ba = 0 while aa∧ba = a∧a = (a/a)a = 1a = a.
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From generalized hoops to GBL-algebras

Generalized hoops have a simple equational definition using only ·,1,\,/

Generalized hoops have a ∧-operation, but no join (in general)

However, every finite generalized hoops is a reduct of an integral
GBL-algebra since a finite meet semilattice with a top element is a lattice

Moreover, finite GBL-algebras are commutative [J. - Montagna 2006]

Definition
A hoop is a commutative generalized hoop, i.e. xy = yx .

Hence finite generalized hoops are in fact hoops

Open problem: Is the equational theory of generalized hoops decidable?
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Homomorphic images of residuated lattices

An efficient way to construct some homomorphic images:

A congruence relation θ of a residuated lattice is determined by the
congruence class [1]θ

Assume this congruence class has a smallest element c

Such an element is a negative central idempotent

i.e., c ≤ 1, cc = c and cx = xc for all x

Let IA = {c ∈ A : cc = c ≤ 1 and (∀x ∈ A)cx = xc}

(IA, ·,∨) is dually isomorphic to the congruence lattice of any finite A
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Define Ac = {xc : x ∈ A}, and operations u∧c v = (u∧v)c,
u/cv = (u/v)c u\cv = (u\v)c

Theorem
Let A be a residuated lattice and c ∈ IA. Then Ac = (Ac,∧c ,∨, ·,c,\c ,/c)
is a residuated lattice and the map h : A→ Ac given by h(x) = xc is a
surjective homomorphism onto Ac .
If θ is the kernel of h then xc is the smallest element of [x ]θ .

Proof.
Ac is closed under the operations: xc ∨yc = (x ∨y)c and (xc)(yc) = xyc
are both in Ac , and for ∧c ,/c ,\c this holds by construction.
h is surjective, so check that it is a homomorphism, then the homomorphic
image is a residuated lattice (homomorphisms preserve identities)
Distributivity of · over ∨ shows that h preserves ∨
Centrality, idempotence and associativity imply that h preserves ·
h(x)∧c h(y) = (xc ∧c yc) = (xc ∧yc)c ≤ (x ∧y)c = h(x ∧y) since c ≤ 1,
(x ∧y)c ≤ xc and (x ∧y)c ≤ yc imply (x ∧y)c ≤ (xc ∧yc)c
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Proof.
From (x/y)y ≤ x we get (x/y)yz ≤ xz and hence x/y ≤ xz/yz .
In particular, (x/y)c ≤ (xc/yc)c, which proves h(x/y)≤ h(x)/ch(y).
For the opposite inequality we have (xc/yc)yc ≤ xc ≤ x , hence by
centrality and idempotence (xc/yc)c ≤ (x/y)c.
Finally, h(1) = 1c = c, which is the unit of Ac .

The theorem works for arbitrary residuated lattices. However in general it
does not construct all homomorphic images, only those where the
1-congruence class of the kernel (and hence every congruence class) has a
smallest element.

Corollary
Let A be a finite (or complete) residuated lattice and B any (complete)
homomorphic image of A. Then B is isomorphic to Ac where c is the
smallest negative central idempotent of A that is mapped by the
homomorphism to 1 in B.
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Hom. images of GBL-algebras and generalized hoops

Theorem
Let A be a GBL-algebra with a central idempotent element c ∈ A. Then
Ac is isomorphic to the principal ideal ↓c, hence ∧c = ∧ and the map
h(x) = xc does not identify any elements of this ideal.

Proof.
By divisibility, if x ≤ c then x = (x/c)c, and therefore x ∈ Ac .
Also, h(x) = xc = (x/c)cc = x , so h �↓c is the identity map.

These results also apply to generalized hoops, and in the finite setting
describe all homomorphic images

A version for right-generalized hoops is under investigation
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Residuated structures for other logics

Residuated lattices have been studied since 1938 by Dilworth and Ward
as abstractions of ideal lattices of rings

Boolean algebras with (residuated) operators were studied by Jónsson
and Tarski 1951/2

In logic implication plays the role of residual
(generalized) conjunction plays the role of multiplication

Since the 1980s residuated lattices have been viewed as algebraic
semantics of substructural logics

In computer science bunched implication logic was introduced in 1998

with (commutative) residuated Heyting algebras as algebraic semantics
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Lattices with operators and some subclasses

LO ⊇ Residuated lattices
|

DLO ⊇ `-groups GBL-algebras
|

HAO ⊇ Generalized bunched implication algebras
|

BAO ⊇ Residuated Boolean monoids
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Generalized bunched implication algebras

Recall that a Heyting algebra is a residuated lattice with ⊥ as bottom
element and xy = x ∧y

In this case we write x → y instead of x\y (= y/x)

A generalized bunched implication algebra or GBI-algebra is an
algebra (A,∨,∧,→,⊥, ·,1,\,/) where (A,∨,∧,→,⊥) is a Heyting
algebra, and (A,∨,∧, ·,1,\,/) is a residuated lattice

Theorem (Galatos - J. 2016)
The equational theory of GBI-algebras is decidable
Also true for non-associative GBI-algebras, and for any subvarieties defined
by finitely many “simple” identities using only ∧,∨, ·,1,>

However divisibility is not equivalent to any such identities
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Residuated Boolean monoids
BI-algebras are commutative GBI-algebras; also equationally decidable

Applications in computer science; basis of separation logic

If Heyting algebra is replaced by Boolean algebra, we get classical
GBI-algebras, also known as residuated Boolean monoids.

Theorem (Kurucz et. al. 1995)
The equational theory of residuated Boolean monoids is undecidable (and
also for many subvarieties, including classical BI-algebras)

Moreover, homomorphic images of finite GBI-algebras can be
computed as for residuated lattices

They are determined by c ∈ IA with the property that ↓(>c)⊆ Ac

(since Heyting algebras are GBL-algebras)
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